- 题意: k个点,每一个点都是一个n * m的char型矩阵。对与每一个点,权值为n * m或者找到一个之前的点,取两个矩阵相应位置不同的字符个数乘以w。找到一个序列,使得全部点的权值和最小
- 分析: 首先,这个图是一个无向图。求权值和最小,每一个权值相应的是一条边,且每一个点仅仅能有一个权值即一条边,一个k个边,和生成树非常像,可是须要证明不能有环形。最好还是如果如今有三个点,每一个点的最小边成环,这时候是不能找到一个序列使得每一个点都取到它的最小边值的,所以,k个点k个边不能有环且边值和最小,就是最小生成树。
prim算法:
const int maxn = 1100;char ipt[maxn][11][11];int dist[maxn][maxn];int d[maxn], p[maxn];bool vis[maxn];int n, m, k, w;int main(){// freopen("in.txt", "r", stdin); while (~RIV(n, m, k, w)) { CLR(dist, 0); REP(i, k) { vis[i] = false; d[i] = n * m; p[i] = -1; } REP(i, k) REP(j, n) RS(ipt[i][j]); REP(i, k) REP(j, k) REP(ii, n) REP(jj, m) dist[i][j] += (ipt[i][ii][jj] != ipt[j][ii][jj]) * w; d[0] = 0; int sum = n * m; VI ans; REP(i, k) { int M = INF, ind; REP(j, k) if (!vis[j] && d[j] < M) { ind = j; M = d[j]; } vis[ind] = true; sum += M; ans.push_back(ind); REP(j, k) { if (!vis[j] && dist[ind][j] < d[j]) { d[j] = dist[ind][j]; p[j] = ind; } } } WI(sum); REP(i, ans.size()) { cout << ans[i] + 1 << ' ' << p[ans[i]] + 1 << endl; } } return 0;}
const int maxn = 1100;struct Edge{ int from, to, dist; int operator< (const Edge& rhs) const { return dist < rhs.dist; } Edge (int from = 0, int to = 0, int dist = 0) { this->from = from; this->to = to; this->dist = dist; }};vectorG[maxn];int in[maxn];vector edges;int fa[maxn];char ipt[maxn][105];int diff[maxn][maxn];int n, m, k, w;int find(int n){ return (n == fa[n]) ? n : (fa[n] = find(fa[n]));}void init(int n){ REP(i, n) { fa[i] = i; G[i].clear(); in[i] = 0; } edges.clear();}void AddEdge(int u, int v, int dist){ edges.push_back(Edge(u, v, dist));}void dfs(int u, int fa){ REP(i, G[u].size()) { Edge& e = G[u][i]; if (e.to != fa) { if (e.dist == m * n) cout << e.to + 1 << ' ' << 0 << endl; else cout << e.to + 1 << ' ' << u + 1 << endl; dfs(e.to, u); } }}void solve(){ int ret = 0; sort(all(edges)); REP(i, edges.size()) { Edge& e = edges[i]; int ru = find(e.from), rv = find(e.to); if (ru != rv) { fa[ru] = rv; ret += e.dist; G[e.from].push_back(Edge(e.from, e.to, e.dist)); G[e.to].push_back(Edge(e.to, e.from, e.dist)); in[e.from]++; in[e.to]++; } } WI(ret + n * m); REP(i, k) { if (in[i] <= 1) { cout << i + 1 << ' ' << 0 << endl; dfs(i, -1); break; } }}int judge(int a, int b){ int cnt = 0; REP(i, n * m) cnt += (ipt[a][i] != ipt[b][i]); return cnt;}int main(){// freopen("in.txt", "r", stdin); while (~RIV(n, m, k, w)) { CLR(diff, 0); REP(i, k) { int len = 0; REP(j, n) { RS(ipt[i] + len); len = strlen(ipt[i]); } } REP(i, k) REP(j, k) REP(t, n * m) diff[i][j] += (ipt[i][t] != ipt[j][t]); init(k); REP(i, k) REP(j, k) { if (i == j) continue; AddEdge(i, j, min(diff[i][j] * w, n * m)); } solve(); } return 0;}